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The dispersion of the axisymmetric stress waves propagated in the in"nite hollow cylinder
"lled with water is studied. Modi"cation of a semianalytical FE approach for &&dry'' cylinders
for this case and other independent FE approaches are described. The usage of the
approaches in question is demonstrated for thick and thin cylinders in cases of isotropic and
composite (monoclinic) materials. In#uence of water upon the dispersion properties of waves
is demonstrated by dispersion curves and shapes of waves. Some dispersion curves were
in#uenced by #uid only weakly, but some dispersion curves were in#uenced very strongly
even for very thick cylinders. ( 2001 Academic Press
1. INTRODUCTION

The problem of propagation of harmonic stress waves in hollow cylinders has been
intensively studied during the last few decades. The analytical and numerical approaches
are concerned mainly with hollow, linearly elastic and anisotropic cylinders. Detailed
reviews of the present state are given in references [1, 2]. Recently, a simple approach was
suggested for obtaining "nite elements for modelling the dispersion of stress waves [3]
propagated in anisotropic, linearly elastic bodies of in"nite length with cross-section of
arbitrary shape, but constant lengths along the body. The approach allows one to model
a given problem without using the so-called (semi)in"nite elements.

The aim of this paper is modelling the above-mentioned problem for the case when the
hollow cylinder is "lled with water: i.e., investigating the in#uence of this #uid on the
dispersion curves. For this purpose, a simpli"ed model of the #uid has been chosen, used
successfully in references [4, 5], where the in#uence of ideal #uid on the natural vibration of
a thin cylindrical shell (clamped at one end, and free at the other end) was investigated. The
suitability of using this model is evident from the excellent agreement of FEM calculations
with experiments for the case of a simple shell, "lled gradually with #uid [4], as well as for
the case, when #uid was in the cylindrical annulus between the elastic wall and the perfectly
rigid wall, for various widths of the annulus [5]. For a veri"cation of the semianalytical
results, another "nite element approach is used in this paper.

2. MODEL USED OF FLUID AND FEM FORMULATION

For the simpli"ed model of incompressible and inviscid #uid it is assumed that the
amplitude of the pressure satis"es the Laplace equation

Dp(x, r)"0 (1)
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and a boundary condition
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where A
c
is the common #uid structure interface, n is a co-ordinate taken along the normal,

o
f

is the #uid density and w is the structural radial displacement. This model in connection
with FEM was used by Zienkiewicz et al. for the "rst time in 1965 [6]. Equation (1) and the
boundary condition (2) can be replaced by equivalent variational formulations, given in
reference [7] for example.

For the given problem it is supposed that the solution is of the form

p (r, x, t)"P(r) cos [m(x$ct], u(r, x, t)"; (r) sin[m (x$ct)],

v(r, x, t)"< (r) cos[m(x$ct)], w(r, x, t)"=(r) cos[m(x$ct)], (3)

where p is the #uid pressure, u, v and w are longitudinal, circumferential and radial
displacements of the elastic cylinder, c is the phase velocity of the axisymmetric wave,
m"2n/K, K is the wavelength and t is the time. Upon considering the strain vector for the
three-dimensional axisymmetric case (see reference [8] for example)
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and the elasticity matrix in the form
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this approach gives the generalized eigenvalue problem in the form

K2K(K)w
i
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D
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i
, (6)

where K and M are the in vacuo structural wave global sti!ness and mass matrices derived
early in reference [3]. These are in the form
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where R
1
, R

2
are inner and outer radius, q is the number of the element nodal points,
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and N
u
, N

v
and N

w
are shape functions for approximations ;(r), <(r) and=(r). The mass

matrix element is in the form

M
e
"2noP
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q
] (9)

with the submatrices of the matrix H

Hk"C
N

u
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, 0

0, 0, N
w
D . (10)

The matrix

MD"o
f
ST K~1

f
S (11)

is the so-called added mass matrix. Derivation of such a (reduced) mass matrix was "rst
suggested by Zienkiewicz et al. [6]. S and K

f
are the global interaction and #uid sti!ness

matrices. The element of the wave sti!ness matrix for the #uid can be expressed by

K
fe

(K)"2nP
R1

0

BT
f Bf rdr, Bf"[b1 , b2,2bq] (12)

with

bj"G
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p
KLN

p
/LrH , (13)

where N
p
are shape functions for the pressure approximation. The global interaction matrix

S for the axisymmetric case has only one non-zero element

s
kl
"2nKR

1
(14)

in the position given by the kth row and the lth column corresponding with the pressure and
the radial displacement at the interaction interface. The eigenvector w

i
represents shape of

the ith wave, with the phase velocity c
i
. The phase velocities and the corresponding shapes

of the waves are solved for the particular value of the wavelength K.

3. ALTERNATIVE FE APPROACH

This approach (used in reference [9] for the case of the cylinder in vacuo) is based on the
assumption that the propagated waves and the standing waves have the same dispersion
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properties. One can then use the analytical solution for the hollow cylinder simply
supported at both ends
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where ;
A
, <

A
and =

A
are the functions sought, m is the number of half-waves in the

longitudinal direction, u is circular frequency and ¸ is the length of the cylinder. The simple
supporting of the hollow cylinder can be expressed by boundary conditions in the form

N
x
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x
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A
"0 (16)

at x"0 and ¸, where N
x
is the normal force, M

x
is the #exural moment and v

A
, w

A
are the

circumferential and radial displacements. The natural modes of vibration of the cylinder are
sinusoidal with the wavelength K"2¸/m. It is supposed that in the case of these boundary
conditions, too dramatic di!erences between &&dry'' and &&wet'' eigenmodes cannot occur as
have occurred in case of the clamped}free cylinder in reference [4]. Discretization of the
hollow cylinder with respect to the boundary conditions (2) and (16) gives the generalized
eigenvalue problem in the form

KAxi"A
nmc

ieqv
¸ B

2
(MA#MAD)xi , (17)

where K
A

is the symmetric, sparse and positive semi-de"nite (due to boundary conditions)
global sti!ness matrix, M

A
is the symmetric, sparse and positive-de"nite global mass matrix

and M
AD

is the added mass matrix given by

M
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Note that the interaction matrix S
A

has a more complicated form than the matrix S in the
previous case. c

ieqv
is the ith equivalent standing wave phase velocity and x

i
is the

corresponding eigenvector representing the ith natural mode of vibration. This system has
one rigid-body mode in axial direction and its "rst eigenfrequency is zero. The lowest
eigenpairs of equation (17) cannot be e!ectively solved by a standard manner based on the
vector iterations. The problem with the singular sti!ness matrix and the full (not sparse)
added mass matrix can be avoided by using an incomplete modal decomposition of the
in vacuo system,
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for the transformation into the reduced form
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Then, for the approximation of the eigenpairs of the generalized eigenvalue problem (17)
one can write

k
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This approach gives the upper approximations of the equivalent standing wave phase
velocities. Note that the explicit construction of the full added mass matrix used in equation
(20) can be avoided by using the Cholesky decomposition of the global #uid sti!ness matrix.

4. NUMERICAL EXAMPLES

The approach described can be applied to the case of investigation of the in#uence of
ideal #uid (water with density o

f
"1000 kg/m3 was considered) on phase velocities and

shapes of the waves in the in"nite hollow thick cylinders. The ratios of the outer to inner
radius of the cylinders were taken to be R

2
/R

1
"1)50 and R

2
/R

1
"1)05. It should be noted

that R
1
"1 m was used in the calculations. Two cases of the material were taken into

account.

(1) Isotropic2steel with the Poisson ratio k"0)29. For the solution of the phase
velocities Young's modulus E"2)05]1011 Pa and mass density o"7800 kg/m3 were
considered.

(2) Composite2unidirectional boron epoxy [10] with the "ber direction 603 with respect
to the x-axis: i.e., material with monoclinic symmetry. The elements of the elasticity matrix

E"6)89475]109

18)86949079 5)83728780 0)97118634 !8)68814264 0 0

5)83728780 5)23220320 0)87966097 !3)12209485 0 0

0)97118634 0)87966097 3)23389825 !0)07926329 0 0

!8)68814264 !3)12209485 !0)07926329 6)32033879 0 0

0 0 0 0 1)275 0)38971143

0 0 0 0 0)38971143 0)825

are given in Pa and the mass density o"2000 kg/m3 was used.
For the semianalytical FE formulation the "nite element models of the cylinders and

water consisted of 250 three-noded quadratic isoparametric "nite wave elements and all
"nite element models used had 1503 degrees of freedom (d.o.f.s) for the elastic cylinder and
501 degrees of freedom for water. The Lanczos algorithm with simple orthogonalization
[11] modi"ed for the case of the added mass matrix was used for the generalized eigenvalue
problem (6). For the alternative FE formulation, the "nite element models of the cylinders
and water consisted of 200 eight-noded quadratic isoparametric axisymmetric "nite
elements with 1899 degrees of freedom for the elastic cylinder and 661 degrees of freedom for
water. For this approach, 40 in vacuo eigenpairs were used and the reduced eigenvalue
problem (20) was solved by the Jacobi iteration method.

Two types of axisymmetric waves were considered for the isotropic material. Rotationally
symmetric waves are characterized by u(x, r, t)O0, v"0 and w(x, r, t)O0 and torsional
waves by u"w"0 and v (x, r, t)O0. Torsional waves cannot be in#uenced by ideal #uid
described by equations (1) and (2). In#uence of water on the dispersion properties of
rotationally symmetric waves is apparent in a decrease of calculated phase velocities. This
in#uence is evident for dispersion curves of a thick cylinder, in Figure 1. Curves of &&wet''
dispersion approximate curves of &&dry'' curves well, and the phase velocities are in#uenced
in most of cases only weakly. Somewhat greater di!erences appeared for longer waves for



Figure 1. First 10 dispersion curves of rotationally symmetric waves propagated in a thick isotropic in"nite
hollow cylinder with R
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the "rst (the lowest) dispersion curve (for R
m
/K(0)5) and for the second curve (for

R
m
/K(0)2) where the decrease of phase velocities is suddenly expressive. Calculated phase

velocities for R
m
/K"0)3125 are shown in Table 1. For an exact solution of the phase

velocities of rotationally symmetric waves and analytical solution of the phase velocities of
torsional waves the known Pochhammer solutions for full &&dry'' cylinder [12, 13] has been
modi"ed by considering zero stresses at two surfaces of a hollow cylinder (see Appendices
A and B). These solutions were executed by using the computer code Mathematica [14].
Comparison of these results with results achieved by the semianlytical FE approach shows
an excellent agreement with the largest relative error e(0)001%. Agreement between both
FE approaches is acceptable both for the &&dry'' and &&wet'' cylinders. Some of the calculated
shapes of waves are shown in Figure 2. As was mentioned above, the shapes of the waves
were solved as eigenvectors of problem (6). For better illustration, these shapes are shown as
obtained by using the 2-D elements and also (for x"const.) by using their components u(r)
and w(r). Norms used for the eigenvectors are evident from the "gure. Although the "rst
phase velocity decreased by about more than 9%, the change of corresponding wave shape
appears only in a very small shift of the nodal circle (with respect to the inner surface).
In contradiction to &&dry''wave shape, the nodal circle of the radial displacements appears in
the &&wet'' shape of the second wave. The #uid in#uence on the third wave shape appeared
in the small decrease of the radial displacements. Somewhat greater di!erences have
appeared in locations of nodal circles of axial and radial displacements for fourth wave
shape, as well as a larger decrease of axial displacements.

From Figure 2 one can see that the magnitude of a decrease of the phase velocities
depends on relative magnitudes (further RM) of the radial displacements at the inner surface
of the &&dry'' cylinder (i.e. at r"R

1
). In cases where RM of these displacements are dominant

(see the "rst and fourth &&dry'' wave shapes), a decrease is signi"cant even for a very thick
cylinder. If RM of radial displacements at inner surface are small and RM of axial
displacements there are dominant, the decrease of phase velocities is small (see the
second and third wave shapes). This statement holds only for those cases where &&wet''



TABLE 1(a)

¹he computed phase velocities of the rotationally symmetric waves in the in,nite thick isotropic
cylinder for R

m
/K"0)3125

&&Dry'' (empty) cylinder &&Wet'' cylinder ("lled with water)

Finite element method Finite element method
Exact

i

(modi"ed
Pochhammer)

c
ei

(m/s)

Semianalytical
(MazuH ch)
c
1i

(m/s)

Alternative
c
2i

(m/s)
Semianalytical

(MazuH ch)
c
3i

(m/s)

Alternative
c
4i

(m/s)

1 2738)61 2738)62 2738)62 2484)94 2486)09
2 5422)87 5422)88 5422)88 5357)43 5358)67
3 14109)8 14109)83 14109)93 13915)86 13949)27
4 22758)3 22758)30 22759)05 19132)96 19160)14
5 27082)4 27082)42 26188)56
6 38284)8 38284)85 38004)10
7 47479)0 47479)01 40617)80
8 51168)7 51168)68 51167)64
9 63951)2 63951)18 62126)64

10 70657)2 70657)29 63965)94
11 76751)9 76751)90 76688)65
12 89367)3 89367)34 84742)78

TABLE 1(b)

¹he computed phase velocities of the torsional waves in the in,nite thick isotropic cylinder for
R

m
/K"0)3125

Finite element method
Analytical

i

(modi"ed
Pochhammer)

c
ai

(m/s)

Semianalytical
(MazuH ch)
c
5i

(m/s)

Alternative
c
6i

(m/s)

1 3191)68 3191)68 3191)69
2 13536)6 13536)59 13536)68
3 25930)7 25930)68
4 38566)6 38566)63
5 51267)2 51267)19
6 63994)0 63994)03
7 76734)1 76734)12
8 89481)8 89481)79
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dispersion curve approximates its &&dry'' curve well. In other cases, the situation is more
complicated.

Results for a thin isotropic cylinder are shown in Figures 3 and 4 and in Table 2. Some
dispersion curves (see third, sixth and eighth curve in Figure 3) and great part of second
curve (for R

m
/K'0)3) were in#uenced only weakly. Moreover, fourth and seventh curves

were in#uenced strongly even for shorter wavelengths. Similarly, as for the thick cylinder,
the "rst curve for R

m
/K(0)7 and second curve for R

m
/K(0)2 are in#uenced quite

dramatically. Computed phase velocities for R
m
/K"0)5125 are shown in Table 2. An

excellent agreement between Pochhammer solutions and "nite element approaches and



Figure 2. First four computed shapes of rotationally symmetric waves for Table 1. Left*&&dry'' cylinder,
right*cylinder "lled with water; top*image by using 2-D elements, bottom*normed displacements (** lines
hold for axial uN and ...... lines for radial displacements wN ; rN"r/R

1
*dimensionless radius).
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Figure 2. Continued.
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Figure 3. First 10 dispersion curves of rotationally symmetric waves propagated in a thin isotropic in"nite
hollow cylinder with R
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wavelength;** lines hold for &&dry'' cylinder; ---- lines hold for a cylinder "lled with water.
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also between both FE approaches in the &&dry'' and &&wet'' cases has been obtained. From
Figure 4 it is evident that shapes of &&dry'' cylinder waves are appreciably changing with
change of the parameter R

m
/K. There are dominant radial displacements in the "rst wave

shape (corresponding to the lowest dispersion curve), while in the second wave shape axial
displacements are dominant, when shorter waves with R

m
/K"0)5125 are considered. For

longer waves characterized by R
m
/K"0)1025 it is vice versa. Comparison of &&dry'' and

&&wet'' shapes for shorter waves shows that although the "rst wave phase velocity decreases
appreciably, the corresponding wave shape is in#uenced only minimally. In the second
wave shape one can see only a small decrease of RM of radial displacements. A more
interesting situation is the case of longer waves: i.e., for R

m
/K"0)1025. In this case,

the &&wet'' wave shape with dominant radial displacements corresponds to the "rst &&dry''
wave shape with dominant axial displacements. On the other hand, the predominantly axial
&&wet'' wave shape corresponds to the second &&dry'' wave shape where radial displacements
are dominant. This phenomenon has appeared although the dispersion curves do not cross
each other. Similarity of the second &&wet'' wave shape and the "rst &&dry'' wave shape is
probably caused by the fact that the second &&wet'' curve (for R

m
/K(0)2) has become

&&disloyal'' to the second &&dry'' curve and inclined towards the "rst &&dry'' curve.
In the case of composite monoclinic material, on the contrary to isotropic cylinders,

axisymmetric waves are not separated into purely torsional and purely rotationally
symmetric waves. These waves have all three components of displacements (axial,
circumferential and radial) non-zero, so that all dispersion curves were in#uenced by
contact with #uid. Results for thick monoclinic cylinder are shown in Figures 5 and 6 and in
Table 3. Note, that in general, the decrease of phase velocities caused by contact with #uid is
now greater than the decrease of phase velocities in the case of the isotropic thick cylinder
(see Figure 1). Considering the thickness, this decrease is unexpectedly expressive.
Calculated phase velocities for R

m
/K"0)3125 are in Table 3. In the case of &&dry'' cylinder,

agreement between both FE approaches is excellent, and for the &&wet'' cylinder agreement is
acceptable. Somewhat greater di!erences appeared in this case and were probably caused



Figure 4. First two computed shapes of rotationally symmetric waves propagated in a thin isotropic cylinder
imaged by using normed displcements: (a) for Table 2, i.e., R

m
/K"0)5125, (b) for the R

m
/K"0)1025; left*&&dry''

cylinder, right*cylinder "lled with water; ** lines hold for axial uN and ..... lines for radial displacements wN ;
rN"r/R

1
-dimensionless radius.
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TABLE 2(a)

¹he computed phase velocities of the rotationally symmetric waves in the in,nite thin isotropic
cylinder for R

m
/K"0)5125

&&Dry'' (empty) cylinder &&Wet'' cylinder ("lled with water)

Finite element method Finite element method
Exact

i

(modi"ed
Pochhammer)

c
ei

(m/s)

Semianalytical
(MazuH ch)
c
1i

(m/s)

Alternative
c
2i

(m/s)
Semianalytical

(MazuH ch)
c
3i

(m/s)

Alternative
c
4i

(m/s)

1 1600)67 1600)67 1600)67 1139)67 1139)76
2 5379)78 5379)79 5379)80 5358)05 5358)12
3 64110)7 64110)72 63924)63
4 117082)0 117082)07 75973)61
5 128096)0 128095)63 127733)50
6 191492)0 191492)07 183570)90
7 234843)0 234843)32 191610)00
8 255352)0 255352)21 255351)90
9 319190)0 319189)69 298149)80

10 352159)0 352159)41 319191)10
11 383030)0 383030)40 383014)70
12 446833)0 446833)70 414211)90

TABLE 2(b)

¹he computed phase velocities of the torsional waves in the in,nite thin isotropic cylinder for
R

m
/K"0)5125

Analytical Finite element method
(modi"ed

i
Pochhammer)

c
ai

(m/s)
Semianalytical

(MazuH ch)
c
5i

(m/s)

Alternative
c
6i

(m/s)

1 3191)68 3191)68 3191)69
2 63942)2 63942)24
3 127722)0 127721)7
4 191537)0 191537)3
5 255362)0 255361)9
6 319190)0 319190)1
7 383020)0 383020)2
8 446851)0 446851)3
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by the fact that only the 40 lowest &&dry'' eigenpairs were substituted into equation (20).
Calculated shapes of waves corresponding to Table 3 are depicted in Figure 6. Similarly, as
in the case of a thin isotropic cylinder, interchange of shapes corresponding to the two
lowest phase velocities is evident. In this case (see again the Figure 5 for 0)2(R

m
/K(0)4),

deviation of the second &&wet'' curve relative to the "rst &&dry'' curve is evident while the "rst
&&wet'' curve imitates a course of the second &&dry'' curve. Changes in the third wave shape,
with dominant axial and expressive circumferential displacements, can be characterized by
considerable shift of radial displacements nodal circle towards the outer surface. Evident



Figure 5. First 10 dispersion curves of axisymmetric waves propagated in a thick anisotropic in"nite hollow

cylinder with R
2
/R

1
"1)50, where c

3
"Je

33
/o; e

33
is the diagonal element of the elasticity matrix; o cylinder mass

density; R
m
"(R

1
#R

2
)/2; K the wavelength;** lines hold for &&dry'' cylinder; ---- lines hold for a cylinder "lled

with water.
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relationship exists between the fourth &&dry'' and "fth &&wet'' wave shapes. Similarly, as in the
case of a thick isotropic cylinder, one can consider a relationship between the RM of radial
displacements of &&dry'' wave shape at inner cylinder surface and between phase velocity of
a &&wet'' wave having similar shape. In the case of &&dry'' wave shapes, where these RM of
radial displacements are small, phase velocities corresponding to similar &&wet'' shapes are
only slightly changed (see, e.g., a pair of wave shapes corresponding to the velocities c

13
and

c
33

). In these cases, one cannot speak about decrease of phase velocities only, because in
cases characterized by pairs of the velocities (c

11
, c

32
) and (c

14
, c

35
) increases have occurred.

Unlike the case mentioned above, if one considers a &&dry''wave shape with dominant RM of
radial displacements at inner surface, a decrease of the phase velocity corresponding with
the similar &&wet'' wave shape is appreciable (see, e.g., a pair characterized by the velocities
c
12

and c
31

).
Dispersion curves for a thin monoclinic cylinder are shown in Figure 7. Similarly, as in

the case of a thin isotropic cylinder, some dispersion curves are in#uenced by #uid
appreciably, even the "rst, "fth and eighth ones for shorter wavelengths. The third curve for
R

m
/K(0)2 is in#uenced quite dramatically too. However, the second curve and a great part

of the third curve (for R
m
/K'0)2) are in#uenced negligibly. Calculated phase velocities for

the parameter R
m
/K"0)5125 are shown in Table 4. Note that agreement between both FE

approaches is very good. Some calculated shapes of waves for phase velocities from Table 4
are shown in Figure 8. Radial displacements are dominant in the "rst wave shapes.
Although a dramatic decrease of the "rst phase velocity is encountered, di!erences between
&&dry'' and &&wet'' wave shapes are negligible. The second wave shapes are characterized
by almost purely circumferential displacements and in the third wave shapes axial
displacements are dominant. There are also minimal di!erences between &&dry'' and &&wet''
wave shapes. Dramatic di!erences between wave shapes corresponding to the fourth phase
velocities can be explained similarly as in the above case.



Figure 6. First "ve computed shapes of axisymmetric waves for Table 3. Left*&&dry'' cylinder, right*cylinder
"lled with water; top*image by using 2-D elements, bottom*normed displacements (** lines hold for axial uN ,
----- lines for circumferential vN and ))))))) lines for radial displacements wN , rN"r/R

1
*dimensionless radius).
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Figure 6. Continued.
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Figure 6. Continued.

TABLE 3

¹he computed phase velocities of the axisymmetric waves in the in,nite thick monoclinic
cylinder for R

m
/K"0)3125

&&Dry'' (empty) cylinder &&Wet'' cylinder ("lled with water)

Finite element method Finite element method

i
Semianalytical

c
1i

(m/s)
Alternative

c
2i

(m/s)
Semianalytical

c
3i

(m/s)
Alternative

c
4i

(m/s)

1 1569)22 1569)22 1361)03 1365)64
2 1898)36 1898)36 1596)40 1596)87
3 4630)45 4630)46 4570)91 4576)66
4 9755)77 9755)87 8327)48 8437)78
5 13284)04 13284)24 9932)48 10119)99
6 17326)37 16904)00
7 20698)52 20694)13
8 24965)63 21065)46
9 27333)46 25404)41

10 33659)04 33485)45
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5. CONCLUSIONS

Two approximate FE approaches for modelling the in#uence of water upon the
dispersion properties of axisymmetric waves propagated in in"nitely long hollow cylinder



Figure 7. First 10 dispersion curves of axisymmetric waves propagated in a thin anisotropic in"nite hollow

cylinder with R
2
/R

1
"1)05 where c

3
"Je

33
/o ; e

33
is the diagonal element of the elasticity matrix; o the cylinder

mass density; R
m
"(R

1
#R

2
)/2; K the wavelength;** lines hold for &&dry'' cylinder; ---- lines for a cylinder "lled

with water.

TABLE 4

¹he computed phase velocities of the axisymmetric waves in the in,nite thin monoclinic
cylinder for R

m
/K"0)5125

&&Dry'' (empty) cylinder &&Wet'' cylinder ("lled with water)

Finite element method Finite element method

i
Semianalytical

c
1i

(m/s)
Alternative

c
2i

(m/s)
Semianalytical

c
3i

(m/s)
Alternative

c
4i

(m/s)

1 1051)59 1051)59 479)88 480)01
2 1561)24 1561)24 1561)21 1561)21
3 4805)48 4805)48 4792)10 4792)28
4 42235)46 36283)78
5 66709)40 42352)45
6 83939)79 83829)04
7 93751)31 93720)10
8 125724)4 101323)3
9 133656)1 125834)6

10 167742)6 167315)0
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have been presented. The semianalytical FE approach requires 1-D discretization only. For
its independent veri"cation an alternative FE approach with 2-D discretization has been
used. Calculations by this approach lasted approximately 10 times longer (than for the
semianalytical FE approach) and enable one to determine only a few dispersion curves.
Moreover, that approach requires an additional time for manual or automatic
identi"cation of relevant eigenpairs (with m"1). Comparison of the computed phase
velocities by both FE approaches show very good agreement.



Figure 8. First four computed shapes of rotationally symmetric waves for Table 4 imaged by using normed
displacements. Left*&&dry'' cylinder, right*cylinder "lled with water; ** lines hold for axial uN ; ---- lines for
circumferential vN and ))))))) lines for radial displacements wN , rN"r/R

1
*dimensionless radius.
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Only the rotationally symmetric waves were in#uenced by #uid in the case of the
isotropic cylinder. In the case of the monoclinic material the purely torsional waves did not
occur and all dispersion curves were in#uenced by #uid. A decrease of some phase velocities
was negligible, but for some others it was unexpectedly appreciable even in the case of very
thick cylinders. In#uence of #uid upon shapes of waves is complicated and for a small
vicinity of the considered parameter R

m
/K, the following three possibilities occurred: (1) if

&&wet'' dispersion curve approximates a course of &&dry'' curve well, the corresponding shapes
of waves conform to each other; (2) if the ith &&wet'' curve inclines to the (i!1)th &&dry'' curve,
the corresponding &&wet'' wave shape is similar to the (i!1)-th &&dry'' wave shape; (3) if the
ith &&wet'' curve imitates the (i#1)th &&dry'' curve, the corresponding &&wet''wave shape looks
like the (i#1)th &&dry'' wave shape.

ACKNOWLEDGMENT

This work was partly supported by The Grant Agency of the Slovak Republic, under
Grant No. 2/5095/20.

REFERENCES

1. K. P. SOLDATOS 1994 Applied Mechanics Review 47, 501}516. Review of three dimensional
dynamic analyses of circular cylinders and cylindrical shells.

2. K. P. SOLDATOS and J. Q. YE 1994 Journal of Acoustic Society of America 96, 3744}3752. Wave
propagation in anisotropic laminated hollow cylinders of in"nite extend.

3. T. MAZUD CH 1996 Journal of Sound and <ibration 198, 429}438. Wave dispersion modelling in
anisotropic shells and rods by the "nite element method.

4. MAZUD CH, J. HORAD C[ EK, J. TRNKA and J. VESELYD 1996 Journal of Sound and <ibration 193,
669}690. Natural modes and frequencies of thin clamped-free steel cylindrical storage tank
partially "lled with water: FEM and measurement.

5. J. HORAD C[ EK, T. MAZUD CH and J. TRNKA 1997 Mechanical Engineering (Strojnn&cky c\asopis)
48, 351}362. Natural vibration of a cylindrical shell containing water in a coaxial annular
gap.

6. O. C. ZIENKIEWICZ, B. M. IRONS and B. NATH 1965 Proceedings of the Symposium on <ibration in
Civil Engineering, ¸ondon, April 1965. Natural frequencies of complex free or submerged
structures by "nite elements method.

7. A. KARANACHOS and I. ANTONIADIS 1988 Journal of Sound and<ibration 121, 77}104. Symmetric
variational principles and modal methods in #uid}structure interaction problems.

8. T. KOHL and S. K. DATTA 1992 Journal of Composite Material 26, 661}682. Mode-coupling of
waves in laminated tubes.

9. T. MAZUD CH 1999 Journal of Composite Materials 33, 1390}1410. Variant "nite element
applications to axisymmetric wave dispersion of cylinders.

10. N. J. PAGANO 1974 Composite Materials, Vol. 2, 23}45. New York and London: Academic Press.
Exact moduli of anisotropic laminates.

11. T. MAZUD CH 1991 Proceedings of the Sixth International Conference on Mathematical Methods in
Engineering, Plzen, Czechoslovakia, 27}31 May, II, 363}368. The Lanczos method with simple
orthogonalization.

12. L. POCHHAMMER 1876 Journ. f. reine und angew. Mathem., Bd. 81, 324}336. Uber die
Fortp#anzungsgeschwindigkeiten kleiner schwingungen in einem unbegrenzten isotropen
kreiszylinder.

13. R. BREPTA and M. PROKOPEC 1972 Stress =aves Propagation and Impacts in Bodies. Prague:
Academia (In Czech).

14. S. WOLFRAM 1991 Mathematica: a System for Doing Mathematics by Computer. Reading,
Massachusetts: Addison-Wesley; second edition.



630 T. MAZUD CH
APPENDIX A: EXACT SOLUTION FOR ROTATIONALLY SYMMETRIC WAVES
IN INFINITE ISOTROPIC HOLLOW CYLINDER

As the dispersion equation acquires a very complicated form, its development, is given
only as an outline without the resulting relations. The solution can be assumed in the form

u";(r) sin[m (x#ct)] or u"; (r) e*m(x`ct) ,

w"=(r) cos[m(x#ct)] or w"=(r) e*m(x`ct) , (A.1)

with

;(r)"!

1

m2c2 Gc21imD!

2c2
2

r

d

dr
[rX(r)]H,

=(r)"!

1

m2c2 Cc21
dD
dr

#i2c2
2
mX(r)]D , (A.2)

where i is the imaginary unit, c
1
"J(j#2G)/o and c

2
"JG/o are longitudinal and shear

wavespeeds in a 3-D continuum, E is Young's modulus, G is shear modulus,
j"kE/(1#k) (1!2k) is LameH 's constant and k is the Poisson ratio. Further,

D(r)"AY
0
(ar)#BJ

0
(ar),

X(r)"CY
1
(br)#DJ

1
(br) ,

(A.3)

where A, B, C, D are integrating constants, Y and J are Bessel functions in the usual notation
and

a"mS
c2

c2
1

!1, b"mS
c2

c2
2

!1. (A.4)

The integrating constants are obtained from conditions of zero normal and shear stresses
on free surfaces:

p
rr
"CjD(r)e*m(x`ct)#2G

Lw

LrDr/R1
r/R2

"0,

q
rx
"GC

Lw

Lx
#

Lu

LrDr/R1
r/R2

"0. (A.5)

The nulli"ed determinant for the set of four equations (A.5) gives the dispersion equation.

APPENDIX B: ANALYTICAL SOLUTION FOR TORSIONAL WAVES
IN INFINITE ISOTROPIC HOLLOW CYLINDER

The dispersion equation for torsional waves in hollow cylinder can easily be expressed by
the nulli"ed determinant

detC
d
11

, d
12

d
21

, d
22
D"0, (B.1)
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where

d
11
"

bR
1
[Y

0
(bR

1
)!Y

2
(bR

1
)]

2
!Y

1
(bR

1
) ,

d
12
"

bR
1
[J

0
(bR

1
)!J

2
(bR

1
)]

2
!J

1
(bR

1
) ,

d
21
"

bR
2
[Y

0
(bR

2
)!Y

2
(bR

2
)]

2
!Y

1
(bR

2
) ,

d
22
"

bR
2
[J

0
(bR

2
)!J

2
(bR

2
)]

2
!J

1
(bR

2
) . (B.2)
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